

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

T1382(E)(N19)T **NOVEMBER 2010**

NATIONAL CERTIFICATE

MATHEMATICS N2

(16030192)

19 November (X-Paper) 09:00 - 12:00

REQUIREMENTS: Graph paper.

This question paper consists of 7 pages and a 2-page information sheet.

. •

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE MATHEMATICS N2 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Write neatly and legibly.

QUESTION 1

1

- 1.1 Various options are given as possible answers to the following questions. Write only the letter (A D) next to the question number (1.1.1 1.1.10) in the ANSWER BOOK.
 - 1.1.1 How can ¼ be expressed in terms of base 2?

A 2⁻²

B 2⁻³

 $C 2^2$

 $D 2^{I}$

(1)

1.1.2 The log100 is the same as:

A 20

B 10

 $C 10^2$

D 2

(1)

1.1.3	The trig-function	$\tan \theta$	is positive in	. quadrants.

- A first and fourth
- B second and first
- C first and third

If you factorise $(a^2 - (a - b)^2)$ the answer will be ... 1.1.4

A
$$(b-a)(a+b)$$

B
$$(a-(a-b))(a+(a-b))$$

$$C (a^2+b)(a^2-b)$$

A
$$(b-a)(a+b)$$
.
B $(a-(a-b))(a+(a-b))$.
C $(a^2+b)(a^2-b)$.
D $(a^2+b^2)(a^2-b^2)$. (1)

1.1.5 How many degrees are in a radian?

 $(a^{\circ}.b^{\circ})$ is the same as ... 1.1.6

- A $a^{-3}.b^{-3}$
- B a.b

1.1.7 a^{-x} is the same as ...

A
$$\frac{x}{a}$$

- A $\frac{x}{a}$ B $\frac{1}{ax}$ C $\frac{1}{a^x}$
- D

(1)

 $\sqrt{8}$ can be expressed as ... 1.1.8

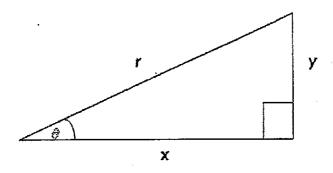
- A $2\sqrt{3}$.
- B $2\sqrt{2}$.
- C $3\sqrt{2}$.
- D $3\sqrt{3}$.

(1)

1.1.9 How can $2^x = 3$ be expressed in terms of a logarithm?

- A $3 = \log_{x} 2$
- $B = x = \log_2 3$
- C $3 = \log_2 x$

$$D = \log_3 x \tag{1}$$


1.1.10 Express $\log_7 2 + \log_7 14$ as a single logarithm:

- A log 24
- B log₇ 7
- C log, 28
- $D \log_7 16 \tag{1}$

1.2 Indicate whether the following statements are TRUE or FALSE. Write only 'true' or 'false' next to the question number (1.2.1 - 1.2.10) in the ANSWER BOOK.

1.2.1
$$\log_b x = y \text{ can be expressed as } x = b^x$$
. (1)

- $1.2.2 A^{\circ} \neq 1. (1)$
- 1.2.3 If $8^x = 1$; then is x = 0. (1)
- 1.2.4 The $\log_2 0.25 = -2$. (1)
- 1.2.5 In the figure below, the $\cos ec\theta = \frac{x}{y}$.

(1)

1.2.6 The expression
$$\sqrt{x^2 + y^2}$$
 is not equal to $x + y$.

1.2.7
$$\sqrt[3]{125x^3} = 25x$$
. (1)

1.2.9
$$\tan \theta \cos ec\theta$$
 is not equal to $\sec \theta$. (1)

1.2.10 The
$$\log_x a$$
 can be written as $\frac{\log a}{\log x}$. (1)

QUESTION 2

2.1 Factorise:

$$2.1.1 5x^2 + 14x - 3 (2)$$

$$2.1.2 a^4 - 81 (3)$$

$$2.1.3 28xz - 21yz - 20xy + 15y^2 (4)$$

2.2 Determine the highest common factor (HCF) of:

$$12(x^{2}-4)$$

$$30(x^{2}-4x+4)$$

$$6(x^{2}-x-6)$$
(4)

2.3 Simplify:

$$2.3.1 2\log_3 2 + \log_3 10 + \log_3 3 - \log_3 40 (3)$$

2.3.2
$$\frac{a^2 - 2a - 8}{2a + 6} \times \frac{4a + 12}{a^2 - 4}$$
 (4) [20]

QUESTION 3

3.1 Solve for x by using the quadratic formulae:

$$2x^2 - 3x - 4 = 0 (4)$$

3.2 Solve for x in the following equations:

3.2.1
$$\log_2 x = 4$$
 (2)

3.2.2
$$\log_x 9 = 2$$
 (2)

$$3.2.3 4,3^x = 36 (2)$$

3.3 Use natural logarithms to determine the value of:

$$\sqrt{4357,45}$$
 (3)

3.4 Make 'a' the subject of the formulae:

$$H = \sqrt{\frac{a^2}{4} + h^2} \tag{3}$$

3.5 Solve for 'x' and 'y' in the following simultaneous equation:

$$3x-4y=3$$
 and $2x+5y=25$ (4)

QUESTION 4

- 4.1 If the radius of a wheel is 20 mm and it turns at 32 revolutions per second, then calculate:
 - 4.1.1 Angular velocity (2)
 - 4.1.2 Peripheral velocity (2)
- 4.2 The circumference of a circle is 155 cm. Calculate the radius as well as the arc length of a sector which is 30°. (5)
- 4.3 A metal structure forms the pinnacle of a church tower built of face bricks. The brick section is 43,42 m high. The angle of elevation from a point on the ground to the top of the pinnacle is 40°15' and to the bottom of the pinnacle, the angle of elevation is 36°10'.

 Calculate the height of the pinnacle.
- 4.4 If $\sin \theta = \frac{4}{5}$ and $90^{\circ} \le \theta \le 180^{\circ}$ determine the following:
 - 4.4.1 $\tan \theta$ (3)
 - $4.4.2 \qquad \sec \theta \tag{2}$

MATHEMATICS N2

INFORMATION SHEET

This sheet must accompany the question paper.

The right cone

Volume =
$$\frac{1}{3}\pi r^2 h$$

Surface area
$$= \pi r \sqrt{h^2 + r^2} + \pi r^2$$
$$= \pi r \ell + \pi r^2$$

The right pyramid

Volume = 1/3 (area of base) × (perpendicular height)

The prism

Volume = (area of base) × (perpendicular height)

The cylinder

Volume =
$$\pi r^2 h$$

Surface area =
$$2\pi r^2 + 2\pi rh$$

The sphere

$$V = \frac{4}{3}\pi r^3$$
; $A = 4\pi r^2$

Degrees and radians

$$180^{\circ} = \pi \text{ rad}$$

Sector:
$$\theta = \frac{\text{arc}}{\text{radius}} -$$
; $A = \frac{1}{2}r^2\theta$

Angular velocity and circumferential velocity

Angular velocity:
$$w = 2\pi n$$

Circumferential velocity:
$$v = \pi Dn$$

n = rotation frequency (r/s = revolution per second)

Mid-ordinate rule

$$= \frac{\text{First ordinate + Last ordinate}}{2} + \text{Sum of other ordinates}$$

Multiply by the distance between the ordinates.

Graphs

Straight line:
$$y = mx + c$$

Parabola:
$$y = ax^2 + bx + c$$

Axis of symmetry:
$$x = \frac{-b}{2a}$$

Roots:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

. . 1 ţ

Trigonometry

$$90^{\circ} < \theta < 180^{\circ}$$

$$\sin \theta = \sin (180^{\circ} - \theta)$$
 $\cos \theta = -\cos (180^{\circ} - \theta)$

$$\tan \theta = -\tan (180^{\circ} - \theta)$$

Segments of circles

Chord length
$$= x$$

Height of segment
$$= h$$

Diameter of circle =
$$D$$

$$D = h + \frac{x^2}{4h}$$

Regular polygons

Angle subtended at centre of circumscribed circle by one side:

$$\theta = \frac{360^{\circ}}{\text{number of sides}}$$

R = radius of circumscribed circle

x =length of side

$$x = 2R \sin \frac{\theta}{2}$$

Annulus:
$$A = \pi (R^2 - r^2)$$

• · ·